

TPC/HBD R&D at BNL

Craig Woody BNL

Mini Workshop on PHENIX Upgrade Plans August 6, 2002

TPC/HBD Detector

GFMs are used for both TPC and HBD

- Fast, compact TPC R<70 cm, L< 80 cm, $T_{drift} \le 4$ msec
- Serves as an inner tracking detector in both HI and pp, providing tracking through the central magnetic field

Df = 2p,
$$|h| \le 1.0$$

Dp/p ~ .02p

- Provides electron id by dE/dx
 ⇒ e/p separation below 200 MeV
- HBD is a proximity focused Cherenkov detector with a ~ 50 cm radiator length
- Provides minimal signals for charged particles
 - ⇒ "Hadron Blind Detector"

R & D Issues

- Performance of micropattern detectors
- Stability and gain uniformity
- Gas studies (CF₄, CH₄, C₂H₂ + mixtures)
 - Drift velocities, drift lengths, diffusion parameters, dE/dx, ion feedback,...
 - Optical transmission extending down into the VUV (⇒ impurities)
 - Photocathode (CsI,...) studies (in combination with GEMs)
 - Scintillation light (I and decay time)
- Detector component design
- TPC & HBD readout planes
- TPC field cage + HBD electrodes
- Understand E x B effects for drifting charge in non-uniform magnetic field
- Understand space charge effects (do we need gating?)
- Construction of prototype
- Electronics (→ P.O'Connor, Chi)

GEM Spatial Resolution

J.Va'vra et.al., NIM A324 (1993) 113-126

Diffusion Limit $s_L \sim 80 \text{ mm}/\sqrt{35} \text{cm} \Rightarrow \sim 500 \text{ mm}$

TPC Channel Count and Data Volume

```
DR = 1 cm, RDf = 2 mm \Rightarrow 80K readout channels (40K/side)
```

10 cm/ms \Rightarrow 100 mm/ns 20 ns (50 MHz) digitizing \Rightarrow Dz = 2 mm

4 msec/20 ns \Rightarrow 200 samples (8 bits) 80K x 200 bytes = 16 MB Zero suppression (1/20) \Rightarrow 800 KB

800 KB/40 msec \Rightarrow 160 Gbit/sec

160 x 1Gbit fibers vs 16 x 10 Gbit fibers

GEM Detector Studies

Double GEM from F. Sauli at CERN

Effective Gas Gain of the Double GEM Detector

Ar+20% CO₂, 5.4 keV x-rays (-1 mm², 2kHz), E₄=1kV/cm, E₆=4kV/cm, E₆=5kV/cm

Data from Bo Yu, BNL Instrumentation Div.

Readout Plane Design

Double GEM Detetor Schematic Cross Section

Most Probable Pulse Height vs X-ray Position

Charge Interpolation Methods

Charges

Chevrons Floating strips Resistive layer

Gas Gain Uniformity

Double GEM Collimated 5.4 keV X-ray, at 2mm x 2mm grid, 9cm x 9 cm area

B.Yu

Damage Caused by Discharges

Gas Gain Variation around a Damaged Spot

Position Dependence and Rate Effects

Photo Peak Position vs Exposure Time and Beam Position

(5.4keV x-rays, 0.1mmx0.5?mm, 3kV, ~0.07pC, 4kHz flux)

B.Yu

Ion Feedback in GEMs

Ratio of Window Current to Anode Current Ar+20% CO₂, Double GEM, V_{gem}=400, E₁=4kV/cm, E₁=5kV/cm, 1cm²

Test Drift Cell

Lifting Fixture

Vacuum Chamber

Drift Stack

GEM with CsI Photocathode

- CsI photocathode deposited on outer GEM foil (must deposit Ni+Au on GEM foil)
- Multistage GEM used to detect
 few photoelectons
- Higher gain, larger segmentation of readout plane

Is the HBD really "hadron blind"?

Csl Photocathodes

Quantum efficiency of CsI photocathodes deposited on metal surfaces

VUV Spectrometer is used as a light source Calibrated CsI PMT is used as a reference

B.Azmoun

Study of Optical Properties of Gases

Absorbance of CF₄

Future R&D Plans

FY2003

- Complete TPC drift cell (including readout plane)
- Gas studies with TPC, HBD, GEMs, (MicroMegas ?)
- Photocathode studies with CsI (CVD diamond ?)
- Design TPC field cage and HBD electrode structure
- Begin engineering design study of TPC/HBD detector system
- Begin design of HBD & TPC readout electronics

FY2004

- Build and test TPC/HBD prototype detector
- Complete design of HBD readout electronics
- Complete engineering design of TPC/HBD detector system

FY2005

- Complete TPC detector design
- Complete design of TPC readout electronics

Cost and Schedule

R&D (3 years)

- HBD Detector Design: \$250K
- TPC Detector Design: \$750K
- Electronic Design: \$1.5M (5 FTEs x 3 yrs)

Total: \$2.5M

(LDRD for \$100K in FY 2001 & FY 2002)

Construction (3 years)

Detector: \$250K

· Gas System: \$250 K

Detector mounted electronics: \$4.0M
 (80K Readout Channels @ \$50/ch)

Other readout electronics: \$500K

Total: \$5.0 M

